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Abstract. Freely jointed chains in external potentials are crude representations of macromolecular
systems in interaction with electrostatic fields, surfaces, walls and interfaces. We show how the
canonical partition function of these models can be computed analytically and how the independent
motion approximation (IMA) may be applied. In particular, the chain stretched at both ends is
studied with IMA and new results are obtained for entropic elastic constants and force/extension
relations, including the dependence on the degree of polymerization. These new results are in good
agreement with molecular dynamics computations.

1. Introduction

The freely jointed chain is an off-lattice model of an ideal polymer. This model was proposed
more than 50 years ago by Kramers [1, 2] and is used frequently in polymer physics for a crude
description of linear connectivity (see, for instance, [3]): nevertheless, a rigorous computation
of the freely jointed chains canonical partition function is recent [4, 5].

In previous papers [4, 5] we computed the canonical partition function of a chain by taking
explicitly all holonomic constraints into account and showed that integration over the velocities
of the monomers leads to a coupling between nearest-neighbour bond vectors. In this paper,
we study the freely jointed chain in an external potential. Our aim is to extract the influence
of the coupling between nearest-neighbour bonds induced by holonomic constraints on some
properties of these systems as the entropic elastic constants and the force/extension relations
[6]. Another objective is to derive general analytical expressions that may be used for all
one-dimensional potentials.

In the context of mean field theory, the complicated interaction between molecules and
environment is simplified by considering the interaction of the molecules with an external
field. This crude approximation of a real system is interesting since it gives a good qualitative
description of the system properties. For our problem, interaction between the chain and
external field is described by using the potential energy of each monomer of the chain. If the
potential energy has no special symmetry, the problem is not very interesting because it is too
general and very little can be said. This is why we restrict ourselves to the study of potential
energies that depend only on one coordinate of the monomer following a fixed direction of the
configuration space. This simplification restricts the generality of our results: nevertheless,
this choice is sufficiently general to apply to a wide range of problems, such as polymers
in a uniform field [7, 8] or stretched under a flow [9, 10], and polymers in interaction with
(im-)penetrable surfaces [11] or in a one-dimensional periodic potential (smectic) [12], etc.
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The paper is organized as follows. In section 2, we study the general problem of a
freely jointed chain in one-dimensional external potentials, we establish analytical relations
for partition function of these systems and show how the independent motion approximation
(IMA) [5] can be implemented. In section 3, we study explicitly, with the new analytical results
obtained in section 2, the problem of a freely jointed chain stretched at both ends. These results
show that entropic elastic constants are 3% larger than those predicted by the independent link
approximation (ILA). With these computations we can also extract the dependence on the
degree of polymerization of the chain. These results allow us to estimate in which conditions
one must take into account the dynamical part of holonomic constraints and since these results
are analytic one is able to control the accuracy of approximations.

In a forthcoming paper we compare the analytical results obtained in this paper with
numerical computations obtained using molecular dynamics (MD) and Monte Carlo algorithms
[13].

2. Analytical computation of the canonical partition function

Before we explicitly examine freely jointed chains stretched at both ends, we study the general
problem of a chain in an external field. We consider that the interaction between the chain and
the field is described via the potential energyUi of each monomerXi of the chain. The total
potential energy of the chain is given byU = ∑N

i=0Ui . The analytical form of the potential
energyUi is chosen such that it depends only on the monomer coordinatesZi following a fixed
directionêz of the space.

Although the choice of one-dimensional potential energy restricts the generality of the
discussion, it does allow us to study a wide range of problems, including polymers in constant
electrostatic fields and polymers in interaction with penetrable surfaces (for instance polymers
at the interface between two solvents) or with impenetrable walls. Of course, for each of these
problems one has to take into account a more precise model and an analytical form for the
potential energy.

In section 2.1 we make the analytical computation of the canonical partition function of a
freely jointed chain in an external potential. The analytical computation is valid as long as an
analytical expression for the potential energy is not needed, thus the results of section 2.1 can
be applied to systems of freely jointed chains other than simply chains stretched at both ends.

In section 2.2 we show how the IMA can be implemented to study this kind of problem.
It appears that IMA is a generalization of ILA. As is explained in the section 2.2 and with the
formalism developed in [5], one can use the results of this paper for all freely jointed chains
with an arbitrary mass sequence.

2.1. Analytical results

We consider a freely jointed chain (homopolymer) in an external field. The monomers of the
chain interact via holonomic constraints and with the external field described via a potential
energyU({Zi}06i6N), where{Zi}06i6N are the monomer coordinates following the axis of
the field. The canonical partition function of this system is

Q
(d)
N (U) = Cind

(ha2)N

h(N+1)d

∫
ϕN

dr0 dp0

N∏
n=1

dun dpn δ(u
2
n − a2)δ((pn − pn−1) · un)

× exp

(
− β

2m

N∑
n=0

p2
n − βU({Zn}06n6N)

)
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whereCind is the indistinguishability factor of both directions of the monomer labelling and
δ(x) the Dirac distribution.

Integration over momenta is done as for the free freely jointed chains [4, 5] and leads to
the result

Q
(d)
N (U) = Cind

1

h(N+1)d

(
h

2π

)N (2πm

β

)d
2 (N+1)

aNd
∫ N∏

n=1

d�n exp

(
− ma

2

β

N∑
n=1

�2
n

)

×
∫

dr0

N∏
n=1

dûn δ(û
2
n − 1)

× exp

(
ma2

β

N−1∑
n=1

�nûn ·�n+1ûn+1− βU({Zn}06n6N)
)
. (1)

Because of the axial symmetry of the potential energy, it is advantageous to separate the unitary
bond vectorŝui in axial and radial part. We set{

r0 = r0⊥ +Z0êz

ûn = ηnŵn + znêz for 16 n 6 N
(2)

which inverts as
r0⊥ = r0 − (r0 · êz)êz
Z0 = r0 · êz
ηnŵn = ûn − (ûn · êz)êz for 16 n 6 N
zn = ûn · êz for 16 n 6 N .

(3)

By expressing the integral over the spatial part of the phase space with the new variables
(ηn, ŵn, zn) one gets∫

dr0

N∏
n=1

dûn δ(û
2
n − 1) · · · =

∫
dr0⊥ dZ0

N∏
n=1

∫ 1

−1
dzn

∫ 1

0
dηn η

(d−2)
n

×
∫

dŵn δ(η
2
nŵ

2
n + z2

n − 1) · · · (4)

and with the relations

δ(η2
nŵ

2
n + z2

n − 1) = δ(ŵ2
n − 1)δ(η2

n + z2
n − 1)

= 1

2(1− z2
n)

1
2

δ(ŵ2
n − 1)(δ(ηn − (1− z2

n)
1
2 ) + δ(ηn + (1− z2

n)
1
2 ))

we find that∫
dr0

N∏
n=1

dûn δ(û
2
n − 1) . . .

=
∫

dr0⊥ dZ0

N∏
n=1

∫ 1

−1
(1− z2

n)
(d−3)

2 dzn

∫
dŵn δ(ŵ

2
n − 1) . . . . (5)

The unitary vectors{ŵn}16n6N are in the hyperplan of(d − 1)-dimensions perpendicular to
the axis of the field, while the vectors{ûn}16n6N are the unitary vectors parallel to the bond
vectors of the chain.
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The contribution of the spatial part of the phase space to the canonical partition function
is now given by∫

dr0⊥ dZ0

∫ 1

−1

N∏
n=1

(1− z2
n)

(d−3)
2 dzn exp(−βU({Zn}06n6N))

× exp

(
ma2

β

N−1∑
n=1

�n�n+1znzn+1

)∫
dŵn δ(ŵ

2
n − 1)

× exp

(
ma2

β

N−1∑
n=1

�n�n+1(1− z2
n)

1
2 (1− z2

n+1)
1
2 ŵn.ŵn+1

)
. (6)

As for the general freely jointed chain (heteropolymer) [5], we can compute the integral over
theŵ vectors by using a result due to Stanley [14]. With

yn = ma2

β
�n−1�n(1− z2

n)
1
2 (1− z2

n+1)
1
2

integrations over thêw vectors give

Sd−1(1)( 1
2)
(N−1)(2π)

d−1
2 (N−1)

N∏
n=2

y
3−d

2
n I d−3

2
(yn) (7)

whereIµ(x) are modified Bessel functions.
In the following we set bn = (1− z

2
n)

1
2

γn =
(
ma2

β

)
�n.

(8)

The partition function is now written as

Q
(d)
N (U) = 2Cind

(
mkT

2πh̄2

)d
2

((
1

2

) 2
d−1 ma2kT

h̄2

)N
2 (d−1) (

1

2

)( d2−1) 1

0(d2)
J
(d)
N (U) (9)

where the non-integrated part, depending on the external potential, is given by

J
(d)
N (U) = S

V

Sd−1(1)

Sd(1)

(
1

2

)1
2 (N−1) ∫

dZ0

∫ 1

−1

N∏
n=1

b(d−3)
n exp(−βU({Zn}06n6N)

×J̃ (d)N ({zn}16n6N) (10)

andJ̃ (d)N ({zn}16n6N) is defined by

J̃
(d)
N ({zn}16n6N) =

∫ N∏
n=1

dγn
N∏
n=2

(bn−1bnγn−1γn)
3−d

2

N∏
n=2

I d−3
2
(bn−1bnγn−1γn)

× exp

(
−

N∑
n=1

γ 2
n +

N∑
n=2

zn−1znγn−1γn

)
. (11)

The main difficulty in computing the latter integral comes from the coupling betweenγn and
γn+1. Setting {

ωn = bn−1bnγn−1γn for 26 n 6 N
ω1 = γ1

(12)
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and inverted as{
γn = Anωn for 26 n 6 N
γ1 = ω1.

where

An = 1

bn
(b1)

(−1)(n−1)
(n−1)∏
p=1

(ωn−p)(−1)p

we cancel this complicated coupling.
The recurrence relation betweenAn andAn−1:

1

An
= bn−1bnAn−1ωn−1 for 36 n 6 N (13)

holds all information about the linear connection of monomers. Making the transformation
(12) in equation (11) we find

J̃
(d)
N ({zn}16n6N) =

∫
dω1 exp(−ω2

1)

∫ N∏
n=2

dωn

× exp

(
−A2

nω
2
n +

zn−1zn

bn−1bn
ωn

)
Anω

3−d
2
n I d−3

2
(ωn). (14)

J̃
(d)
N ({zn}16n6N) is similar to the constantJ (d)N appearing in the computation of the free freely

jointed chain canonical partition function [4], but computed for(d − 1) instead ofd. This
is not very surprising because integration over theŵ vectors, and the axial and radial parts
decomposition are equivalent to considering that the chain is a heteropolymer in a space of
dimension(d−1)coupled, via some holonomic constraints, to a random walk in one dimension.

Following the method used for free freely jointed chains [5] we set

f̃
(d)
N = AN

∫
dωN exp

(
−A2

Nω
2
N +

zN−1zN

bN−1bN
ωN

)
ω

3−d
2
N I d−3

2
(ωN)

=
(

1

2

)d−3
2 AN

0(d2 − 1)0( 1
2)

∫ 1

−1
dtN (1− t2N)

d
2−2

×
∫ +∞

−∞
dωN exp

(
−A2

Nω
2
N +

(
tN +

zN−1zN

bN−1bN

)
ωN

)
. (15)

The computation of the Gaussian integral gives

f̃
(d)
N =

(
1

2

)d−3
2 1

0(d2 − 1)

∫ 1

−1
dtN (1− t2N)

d
2−2 exp

(
− 1

4A2
N

(
tN +

zN−1zN

bN−1bN

)2
)
. (16)

and with the relation

exp

(
− 1

4A2
N

(tN +BN)
2

)
=
∞∑
n=0

1

n!

(
1

4

)n ( 1

A2
N

)n
(tN +BN)

2n

=
∞∑
n=0

1

n!

(
1

4

)n ( 1

A2
N

)n 2n∑
p=0

(
2n

p

)
t
p

NB
2n−p
N (17)

we compute the integral overtN :

f̃
(d)
N =

(
1

2

)d−3
2 ∞∑
n1=0

1

n1!

(
1

4

)n1 n1∑
k1=0

(
2n1

2k1

)(
zN−1zN

bN−1bN

)2(n1−k1)
(

1

AN

)2n1

. (18)



1846 M Mazars

We use the recurrence relation (13) betweenAN andAN−1 to obtain

f̃
(d)
N =

(
1

2

)d−3
2 ∞∑
n1=0

1

n1!

(
1

4

)n1 n1∑
k1=0

(
2n1

2k1

)

× 0(k1 + 1
2)

0(k1 + d−1
2 )

(zN−1zN)
2(n1−k1)(bN−1bN)

2k1A
2n1
N−1ω

2n1
N−1. (19)

f̃
(d)
N−1 is defined inductively fromf̃ (d)N by

f̃
(d)
N−1 = AN−1

∫
dωN−1 exp

(
−A2

N−1ω
2
N−1 +

zN−2zN−1

bN−2bN−1
ωN−1

)
ω

3−d
2
N−1I d−3

2
(ωN−1)f̃

(d)
N

=
(

1

2

)d−3
2 ∞∑
n1=0

1

n1!

(
1

4

)n1 n1∑
k1=0

(
2n1

2k1

)
0(k1 + 1

2)

0(k1 + d−1
2 )

×(zN−1zN)
2(n1−k1)(bN−1bN)

2k1

×
(

1

2

)d−3
2 AN−1A

2n1
N−1

0(d2 − 1)0( 1
2)

∫ 1

−1
dtN−1 (1− t2N−1)

d
2−2

×
∫ +∞

−∞
dωN−1ω

2n1
N−1 exp

(
−A2

N−1ω
2
N−1 +

zN−2zN−1

bN−2bN−1
ωN−1

)
. (20)

The computation of the integral overωN−1 is straightforward. We have

f̃
(d)
N−1 =

(
1

2

)d−3
2 ∞∑
n1=0

1

n1!

(
1

4

)n1 n1∑
k1=0

(
2n1

2k1

)
0(k1 + 1

2)

0(k1 + d−1
2 )

(zN−1zN)
2(n1−k1)(bN−1bN)

2k1

×
(

1

2

)d−3
2 1

0(d2 − 1)

∞∑
n2=0

1

n2!

(
1

4

)n2 0(n1 + n2 + 1
2)

0(n2 + 1
2)

(
1

AN−1

)2n2

×
∫ 1

−1
dtN−1 (1− t2N−1)

d
2−2

(
tN−1 +

zN−2zN−1

bN−2bN−1

)2n2

. (21)

With the binomial formula for(tN−1 + zN−2zN−1

bN−2bN−1
)2n2 we can compute the latter integral, and

another use of the recurrence relation (13) gives the result

f̃
(d)
N−1 =

(
1

2

)d−3
2 ∞∑
n1=0

1

n1!

(
1

4

)n1 n1∑
k1=0

(
2n1

2k1

)
0(k1 + 1

2)

0(k1 + d−1
2 )

(zN−1zN)
2(n1−k1)(bN−1bN)

2k1

×
(

1

2

)d−3
2 ∞∑
n2=0

1

n2!

(
1

4

)n2 0(n1 + n2 + 1
2)

0(n2 + 1
2)

n2∑
k2=0

(
2n2

2k2

)

× 0(k2 + 1
2)

0(k2 + d−1
2 )

(zN−2zN−1)
2(n2−k2)(bN−2bN−1)

2k2A
2n2
N−2ω

2n2
N−2. (22)

The latter relation shows that the dependence off̃
(d)
N−1 onωN−2 has the same structure as the

dependence of̃f (d)N onωN−1; thus we can compute inductivelỹJ (d)N ({zn}16n6N) as a multiple
power series expansion. Finally we find

J̃
(d)
N ({zn}16n6N) = 0

(
1

2

)(
0( 1

2)

0( d−1
2 )

)(N−1) (
1

2

)(d−3)
2 (N−1)

×
∞∑
n1=0

1

n1!

(n1,
1
2)

(n1,
d−1

2 )

(
1

4

)n1

=(d)n1
(zN−1zN, bN−1bN)
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×
∞∑
n2=0

1

n2!

(n1 + n2,
1
2)

(n2,
d−1

2 )

(
1

4

)n2

=(d)n2
(zN−2zN−1, bN−2bN−1)

. . .

×
∞∑
np=0

1

np!

(np−1 + np, 1
2)

(np,
d−1

2 )

(
1

4

)np
=(d)np (zN−pzN−p+1, bN−pbN−p+1)

. . .

×
∞∑

nN−1=0

(nN−1,
1
2)

nN−1!

(nN−2 + nN−1,
1
2)

(nN−1,
d−1

2 )

(
1

4

)nN−1

=(d)nN−1
(z2z1, b2b1) (23)

where

=(d)n (a, b) = b2n
2F1

(
−n, 3− d

2
− n; 1

2
; a

2

b2

)
. (24)

In equation (23) one can observe that the analytical structure of the expansion is similar to the
structure of the expansion corresponding to a free freely jointed chain in a space of dimension
(d − 1). The coupling between the chain in(d − 1) dimensions and the random walk in one
dimensions is expressed with the set of variables{zn}16n6N .

One should remember that in the computation leading to equation (23) from equation
(1) no approximation was made, and thus the result forJ̃

(d)
N ({zn}16n6N) is analytical. At this

stage of the computation, because the coupling between the random walk and the chain appears
explicitly, we need an analytical expression for the potential energy. Of course, in most cases,
the analytical form of the potential energy would lead to a complicated integral that we cannot
compute analytically. This new analytical result allows us to define new approximations for
related problems.

Before illustrating these results on the problem of the freely jointed chain stretched at
both ends, we show that equation (23) with equations (10) and (9) are in agreement with the
analytical results obtained for the free freely jointed chains in(d−1) andd dimensions [4, 5].

For the free freely jointed chain ind-dimensions, the external potential should be chosen
such that

exp(−βU({Zn}06n6N)) = 1 (25)

with the result that∫ 1

−1
(1− z2)

(d−3)
2 dz=(d)n (xz, (1− x2)

1
2 (1− z2)

1
2 )

= 0
(

1

2

)
0(n + d−1

2 )

0(n + d
2)

n∑
k=0

(
n

k

)
x2(n−k)(1− x2)k

= 0
(

1

2

)
0(n + d−1

2 )

0(n + d
2)

(x2 + (1− x2))n = 0
(

1

2

)
0(n + d−1

2 )

0(n + d
2)

.

We find that∫ 1

−1

N∏
n=1

(1− z2
n)

(d−3)
2 dzn J̃

(d)
N ({zn}16n6N) = (2π) 1

2 (N−1)

(∫ 1

−1
(1− z2

1)
(d−3)

2 dz1

)
J
(d)
N . (26)

Since ∫ 1

−1
(1− z2

1)
(d−3)

2 dz1 =
0( 1

2)0(
d−1

2 )

0( d2)

Sd−1(1) =
2(0( 1

2))
(d−1)

0( d−1
2 )
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and

(2π)
d−1

2 (N−1) = (2π) d2 (N−1)

(
1

2π

)1
2 (N−1)

we have

Sd−1(1)

(
1

2π

)1
2 (N−1) ∫ 1

−1

N∏
n=1

(1− z2
n)

(d−3)
2 dzn J̃

(d)
N ({zn}16n6N) = Sd(1)J (d)N . (27)

Therefore we recover the results of [4, 5] and have established that

Q
(d)
N = Q(d)

N (U ≡ 0).

To obtain a free freely jointed chain in(d − 1) dimensions, let

exp(−βU({Zn}06n6N)) = δ(Z0)

N∏
n=1

δ(zn). (28)

Thus we find ∫ 1

−1

N∏
n=1

(1− z2
n)

(d−3)
2 dzn

N∏
n=1

δ(zn)J̃
(d)
N ({zn}16n6N) = J (d−1)

N (29)

and ∫
dZ0 δ(Z0) = 1.

To recover the partition function of a free freely jointed chain in(d − 1) dimensions one has
also to impose that the monomer momentum be perpendicular to a fixed directionêz: i.e., one
has to include a term as

N∏
n=0

δ(pn · aêz).

in the computation. These constraints freeze the degrees of freedom of the system along the
êz-direction and withCind = 1/2! we have

Q
(d−1)
N (0) = Q(d)

N (δ(Z0)

N∏
n=1

δ(zn)

N∏
n=0

δ(pn · aêz)).

2.2. IMA

Following the study performed for free freely jointed chains (homopolymer [4] and
heteropolymers [5]), it is convenient to define some diagrammatic rules to simplify analytical
expressions such as equation (23). These diagammatic rules also show explicitly the technical
difficulties encountered in the computation ofQ(d)

N (U).
Following our previous papers, we define diagrammatic rules involving sites and lines:

(a) As in the case of free freely jointed chains, the ‘propagators’ between two neighbouring
sites are defined by:(

n + p,
1

2

)
≡ ≡ . (30)
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Figure 1. (a) Diagram forJ̃ (d)N ({zn}16n6N ). (b) Primary structure of the freely jointed chain; the
ith site of (a) corresponds to the trimerXi−1 −Xi −Xi+1.

(b) Since variableszp and zp+1 are non-trivially coupled together via the multiplicitynp
of a site, one must define the diagrammatic rule for sites with the variableszp andzp+1

appearing in the diagram. The diagram for a site with a multiplicitynp is therefore defined
by:

≡ 1

np!

1

(np,
d−1

2 )

(
1

4

)np
=(d)np (zpzp + 1, (1− z2

p)
1
2 (1− z2

P+1)
1
2 ).

(31)

(c) For the ending sites, the diagram is directly given by the definition of propagator and site:

≡ (np, 1
2) ≡ .

(32)

With these rules, equation (23) can be rewritten as a single diagram (see figure 1).
In equation (31), the circle defining the site has exactly the same meaning as the site

defined for a homopolymer [4] since we recover at the beginning of the right-hand side of
equation (31) the definition of a site for a free freely jointed chain in(d − 1) dimensions.

The coupling between neigboring sites and between the variables{zn}16n6N , as is shown
in figure 1(a), is a consequence of the linear connection of the monomer (cf figure 1(b)).
A natural way to obtain a first approximation of this function is to cancel the coupling by
disconnecting the sites. In doing this, the complicated diagram of figure 1(a) is reduced to a
product of simple diagrams each involving only one site.

Because a site is associated to a trimer, for example theith site is associated to the trimer
Xi−1 − Xi − Xi+1, the disconnecting of sites is physically equivalent to considering that the
movement of the monomerXi is influenced only by the movement of its nearest neighbours:
the monomersXi−1 andXi+1. This is why we call this approximation the independent motion
approximation. The IMA is improved by considering tetramers, pentamers and more generally
n-mers, instead of trimers [5]. This scheme of approximation has been shown to be very
accurate for the computation of canonical partition function of free freely jointed chains [4, 5].
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When the chain interacts with an external field, this approximation should be quite a good
approximation if the potential energy of each monomer is small compared with its kinetic
energy. Thus IMA should be valid for weak interactions and at high temperature. On the
other hand, if the interaction of a monomer with the external field is strong enough, then the
movement of this monomer will strongly perturb the movement of monomers other than its
closest neighbours; thus, if at least one monomer in the chain has a strong interaction with the
external field, the IMA is not accurate.

The diagrammatic rule (32) shows how we can disconnect two neighbouring sites. First,
we cut the propagator of equation (30) and take the value 0 for the multiplicity on the left of
the propagator and keep the true value ofn for the site on the left of the propagator; for the
valuep on the right of the propagator, we keep the true value ofp for both the site and the
right-hand side of the propagator. Second, one must disconnect the coupling induced byzp+1.
This is done by considering thatzp+1 stay connected to the sitenp+1 and for the sitenp, zp+1

be changed into a constanty0 not equal to 0 or to 1.
By using this procedure and according to equation (32),J̃

(d)
N ({zn}16n6N) is approximated

by

J̃
(d)
N ({zn}; y0)|1(l) = J0

 ∞∑
nN−1=0

 N−2∏
p=1

 ∞∑
np=0

0

(33)

with

J0 = 0
(

1

2

)(
0( 1

2)

0( d−1
2 )

)(N−1) (
1

2

)(d−3)
2 (N−1)

.

In equation (33) one can note that the role played by the ending trimers of the chainX0−X1−X2

andXN−2−XN−1−XN are not equivalent. This is, of course, an artefact of the approximation.
To correct this misleading behaviour one has to again make the same approximation, but now
by disconnecting the neighbouring sites to the right. Thus one obtainsJ̃

(d)
N ({zn}; y0|1(r) which

has an analytical expression similar to equation (33). ThenJ̃
(d)
N ({zn}; y0)|1 is given by the

geometrical average of̃J (d)N ({zn}; y0)|1(l) andJ̃ (d)N ({zn}; y0)|1(r). It is worthwhile to mention
that if all monomers have the same mass thenJ̃

(d)
N ({zn}; y0)|1(l) is equal toJ̃ (d)N ({zn}; y0)|1(r)

thus toJ̃ (d)N ({zn}; y0)|1 [5]. As is shown in equation (33), the last site (or the first) is connected
to zN−1 andzN (resp.z1 andz2). A final approximation is needed to evaluate with the same
precision the contribution of all sites: thus, we make

∞∑
nN−1=0

'
∞∑

nN−1=0


0


×


0

 (34)

and the same approximation for the first site when we disconnect to the right.
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Finally an approximation of the spatial contribution to the canonical partition function
is given by integration ofJ̃ (d)N ({zn}16n6N ; y0)|1 over the variables{zn}16n6N and by taking
y0→ 0

J
(d)
N (U)|1 = lim

y0→0

(∫ 1

−1

N∏
n=1

(1− z2
n)

(d−3)
2 dzn exp(−βU)J̃ (d)N ({zn}; y0)|1

)
. (35)

3. The freely jointed chain stretched at both ends

The freely jointed chain stretched at both ends is an ideal chain on which a force−f is applied
on the ‘first’ monomer and a forcef on the ‘last’ monomer. An example of this kind of
system is given by a chain with the first monomer carrying an electric charge−q and the last
monomer carrying a charge +q in a constant and uniform electric fieldE = Eẑ(E > 0), where
we neglect the interaction between charges carried by the first and the last monomers [15].

Another example of such systems is given in micromanipulation of DNA molecules. In
these experiments one end of a DNA molecule is attached to a surface, while the other end is
attached to a small magnetic bead used to put the polymer under uniform tension [16, 17].

The forces acting on the freely jointed chain are given by

fN = qEẑ = f ẑ and f0 = −fN = −qEẑ = −f ẑ (36)

and a straightforward computation gives the potential energy of the chain as

Usyst= U0 +UN = f (Z0 − ZN) = −f a
N∑
n=1

zn. (37)

In the following we set

α = af

kT
.

Because one needs to define arbitrarily the first monomer as the monomer carrying the charge
−q, we lose the indistinguishability of direction of the monomer labelling. On the other
hand, since we neglect the charge interaction between the first and the last monomers, the
indistinguishability of both directions of labelling must be recovered whenα = 0. Thus, when
expanding the canonical partition function as a power series inα, one should divide the first
term of the series by the indistinguishability factor to obtain the limitα → 0 correctly from
the series expansion.

3.1. The ILA

The standard method of approximation to compute the canonical partition function of the chain
stretched at both ends is to consider that the stretching potential of equation (37) tends to orient
each bond along the force. In this approximation each bond is considered independently of
the other bonds, and in particular one loses the coupling between neighbouring bonds induced
by the kinematic part of the holonomic constraints (cf equation (1)).

In this section we give the principal results obtained with this approximation for the chain
stretched at both ends (see [18], ch X, appendix B or [3] ch I, section 8). A straightforward
computation gives the canonical partition function as

ZILA =
(

4π
sinhα

α

)N
. (38)
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The free energy is given by

FILA = −kT lnZILA = cte −NkT ln
sinhα

α
(39)

the force/extension relation is defined by

〈X〉ILA = −
(
∂FILA

∂f

)
N,V,T

= Na
(

cothα − 1

α

)
= NaL(α), (40)

whereL(x) is the Langevin function, and the susceptibility by

χILA =
(
∂〈X〉ILA

∂f

)
N,V,T

= Na2

kT

(
1

α2
− 1

sinh2 α

)
. (41)

In d-dimensions, the same approximation gives for the canonical partition function

Z
(d)
ILA =

(
Sd(1)

∫ π

0
dθ sin(d−2) θeα cosθ

)N
=
(

2
(0( 1

2))
d0( d−1

2 )

0( d2)

)N ((
2

α

)( d2−1)

I d
2−1(α)

)N
.

The free energy, the force/extension relation and the susceptibility are computed as ford = 3.
The ILA is frequently used for crude description of the elasticity of macromolecular

systems. In some systems, like a network of long polymer chains [19] or DNA molecules
[16], the entropic contribution to the free energy is partially taken into account with the ILA.
In particular, the force/extension relations in the entropic regime computed by Monte Carlo
algorithms are well fitted with ILA [20]. This is not in disagreement with the computations
performed in section 2, because in Monte Carlo simulation most algorithms sample only
the spatial part of the phase space, and thus corrections induced by the dynamical part of the
holonomic constraints are forgotten. On the other hand, molecular dynamics algorithms sample
the whole phase space: then the corrections to ILA predicted by the analytical computation of
the previous section are relevant in these numerical computations. In a paper in preparation
we shall present molecular dynamics computations of freely jointed chains stretched at both
ends coupled to a Nosé–Hoover thermostat [21] and compare the numerical results with IMA
presented in the next section.

3.2. Corrections predicted by IMA

Whenα is small we may use IMA to evaluate the spatial contribution to the canonical partition
function. Thus by disconnecting the sites of theJ̃ (d)N ({zn}16n6N) diagram (cf figure 1(a)),
following the rules described in section 2.2, and using equations (33) and (34) we find that

J̃
(d)
N ({zn}16n6N) diagram'

N−1∏
p=1

 ∞∑
np=0

0
×


0
 .

This equation is obtained by disconnecting the sites to the left. We consider that all monomers
have the same mass: thus IMA to the left gives the same result as IMA to the right. This
would not hold if the chain had a heterogeneous mass sequence [5]. For such a model of
heteropolymer one must take the geometrical average of both approximations to cancel some
unphysical artefacts. Nevertheless, the study of this general case is straightforward with the
formalism built in [5].
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To obtainJ (d)N (α) from equation (41) we have to compute two integrals:

J0(α; y0) =
∫ 1

−1
(1− z2)

1
2 (d−3) exp(αz)


0
 dz (42)

and

J1(α; y0) =
∫ 1

−1
(1− z2)

1
2 (d−3) exp(αz)

 ∞∑
n=0

0
 dz. (43)

With these integrals̃J (d)N (α)|1 is given by

J
(d)
N (α) =

(
1

2

)( d2−1)
S(d−1)(1)

Sd(1)

(
0( 1

2)

0( d−1
2 )

)(N−1)

( lim
y0→0

J1(α; y0))
(N−1) lim

y0→0
J0(α; y0). (44)

ForJ0(α; y0) we find easily that

J0(α; y0) = J0(α) = 0
(

1

2

)
0

(
d − 1

2

)(
2

α

)( d2−1)

I d
2−1(α) (45)

and forJ1(α; y0) we expand eαz as a power series inαz and compute the integral. With the
result∫ 1

−1
dz (1− z2)

1
2 (d−3)+kz2(n−k)eαz =

∞∑
p=0

1

(2p)!
α2p 0(n− k + p + 1

2)0(k + d−1
2 )

0(n + p + d
2)

we find that

J1(α; y0) =
(

1

2

)(d−3)
2
(
0

(
1

2

))2 ∞∑
p=0

1

p!

1

0(p + 1
2)

(
α2

4

)p ∞∑
n=0

1

n!

0(n + 1
2)

0(n + p + d
2)

(
1

4

)n
×

n∑
k=0

(
n

k

)
0(n− k + p + 1

2)

0(n− k + 1
2)

y
2(n−k)
0 (1− y2

0)
k. (46)

With the relation
n∑
k=0

(
n

k

)
0(n− k + p + 1

2)

0(n− k + 1
2)

y
2(n−k)
0 (1− y2

0)
k

= 0(p + 1
2)

0( 1
2)

(1− y0)
n
2F1

(
−n, p +

1

2
; 1

2
; y2

0

(1− y2
0)

)
= 0(p + 1

2)

0( 1
2) 2

F1

(
−n,−p; 1

2
; y2

0

)
we have

J1(α; y0) =
(

1

2

)(d−3)
2

0

(
1

2

) ∞∑
p=0

1

p!

(
α2

4

)p

×
∞∑
n=0

1

n!

0(n + 1
2)

0(n + p + d
2)

(
1

4

)n
2

F1

(
−n,−p; 1

2
; y2

0

)
(47)
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and

lim
y0→0

J1(α; y0) =
(

1

2

)(d−3)
2 0( 1

2)

0( d2)

∞∑
n=0

1

n!

(n, 1
2)

(n, d2)
0F1

(
; n +

d

2
; α

2

4

)

=
(

1

2

)(d−3)
2 0( 1

2)

0( d2)
83

(
1

2
; d

2
; 1

4
,
α2

4

)
(48)

where83(a; c; x, y) is a Humbert function (cf [22], p 28) defined by an Appell function as

83(a; c; x, y) = lim
ε→0

F1

(
1

ε
, a,

1

ε
; c; εx, ε2y

)
=
∞∑
n=0

1

n!

(n, a)

(n, c)
xn0F1(; n + c; y)

=
∞∑
p=0

1

p!

1

(p, c)
yp1F1(a;p + c; x). (49)

An approximation of the spatial contribution to the canonical partition function is given by

J
(d)
N (α)|1 =

(
1

2

)( d2−1)(N−1) 0( 1
2)0(

d
2)

0( d−1
2 )

(
0( 1

2)

0( d2)
)(N−1)

(
83

(
α2

4

))(N−1)
((

2

α

)( d2−1)

I d
2−1(α)

)
(50)

where we have simplified the notations for the hypergeometric functions. With equation (9)
the canonical partition function is approximated by

Q
(d)
N (α) = Q(d)

� (V , T )
(
T

T0

)N
2 (d−1) (

83

(
α2

4

))(N−1)
((

2

α

)( d2−1)

I d
2−1(α)

)
(51)

where 
Q(d)
� (V , T ) =

(
mkT

2πh̄2

)d
2

V

T0 = 2

(
1√
2

0(d2)

0( 1
2)

) 2
d−1

h̄2

kma2
.

(52)

The free energy is given by

F
(d)
N (α) = −kT lnQ(d)

N (α) (53)

and the force/extension relation by

〈RN · êz〉 = 〈Z〉 = −
(
∂F

(d)
N (α)

∂f

)
N,V,T

= a
(
∂ lnQ(d)

N (α)

∂f

)
N,V,T

. (54)

For a large degree of polymerization (N � 1), we may approximate the free energy as

FN = Fid(N, V, T )−NkT ln83

(
α2

4

)
(55)

and with the relation

∂p

∂yp
83(a; c; x, y) = 0(c)

0(c + p)
83(a; c + p; x, y) (56)
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we compute the force/extension relation as

〈Z〉
Na
= 1

d
α
83(

1
2; d2 + 1; 1

4,
α2

4 )

83(
1
2; d2 ; 1

4,
α2

4 )
. (57)

The susceptibility is given by

χ
kT

Na2
= 1

d
α
83(

d
2 + 1)

83(
d
2)

(
1

α
+

α

(d + 2)

83(
d
2 + 2)

83(
d
2 + 1)

− α
d

83(
d
2 + 1)

83(
d
2)

)
. (58)

In figure 2(a) we show the force/extension relations given by the ILA (equation (40)) and the
IMA (equation (57)), while in figure 2(b) the susceptibilities are represented. It appears that
both approximations are in very good agreement, the precision of ILA for the force/extension
relation compared with IMA is better than 1% and between 2–5% for susceptibilities. IMA
is interesting for two reasons. First, by using IMA we can predict the behaviour with the
polymerization degree induced by the linear connection of monomer, while ILA cannot give
such results. Second, one can build an iterative scheme of approximation with IMA that
converges to the analytical result of equation (23) by grouping neighbouring sites in blocks;
this scheme is described in [5]. IMA can be considered as a generalization of ILA.

By using ILA for very smallα (α � 1) we find that

〈X〉ILA

Na
∼
(

1

d
α − (d − 2)

(d + 2)d2
α3

)
for α � 1. (59)

The Hooke elastic constantKH and the nonlinear elastic constantKnl are defined by

f ∼ KH〈X〉 +Knl〈X〉3. (60)

Thus, with ILA we find that
K∗H|ILA = KH|ILA

Na2

kT
= d

K∗nl|ILA = Knl|ILA
N3a4

kT
= d2

(d + 2)
.

(61)

Ford = 3 equation (61) givesK∗H|ILA = 3 andK∗nl|ILA = 9
5.

On the other hand, by using IMA with very smallα and according to

83

(
1

2
; c; 1

4
,
α2

4

)
' 1F1

(
1

2
; c; 1

4

)
+

1

c
1F1

(
1

2
; c + 1; 1

4

)
α2

4
(62)

we find that

〈Z〉
Na
∼ a

kT

(
1

d

1F1(
d
2 + 1)

1F1(
d
2)

)
f

+
1

2

Na4

(kT )3

(
1

d

1F1(
d
2 + 1)

1F1(
d
2)

)2(
d

d + 2
1F1(

d
2 + 2)1F1(

d
2)

(1F1(
d
2 + 1))2

− 1

)
f 3. (63)

Thus, with IMA we find for the elastic constants:
K∗H|IMA = d 1F1(

d
2)

1F1(
d
2 + 1)

K∗nl|IMA = d2

2

(
1F1(

d
2)

1F1(
d
2 + 1)

)2(
1− d

d + 2
1F1(

d
2 + 2)1F1(

d
2)

(1F1(
d
2 + 1))2

)
.

(64)
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Figure 2. (a) Force/extension relations for the freely jointed chain stretched at both ends obtained
by using the ILA and IMA ford = 3 andN � 1. (b) Susceptibilities obtained by using ILA and
IMA. The reduced susceptibility is defined byχ∗ = (kT /Na2)χ .

For d = 3 these elastic constants areK∗H|IMA ' 3.106 andK∗nl|IMA ' 1.871. The difference
betweenK∗H|IMA andK∗H|ILA can be seen in figure 2(b) whenα→ 0.

For smallα (i.e. α < 1) we may approximate by using Taylor expansion:(
2

α

)( d2−1)

I d
2−1(α) '

1

0(d2)
(1 +a2α

2 + a4α
4 + a6α

6 + a8α
8) + o(α10) (65a)

83

(
α2

4

)
' 1F1

(
1

2
; d

2
; 1

4

)
(1 +ϕ1α

2 + ϕ2α
4 + ϕ3α

6 + ϕ4α
8) + o(α10) (65b)
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with 

a2 = 1

2d

a4 = 1

8

1

(d + 2)d

a6 = 1

48

1

(d + 4)(d + 2)d

a8 = 1

384

1

(d + 6)(d + 4)(d + 2)d

and where the coefficientsϕn are given by equation (49), for instance:

ϕ1 = 1

2d
1F1(

1
2; d2 + 1; 1

4)

1F1(
1
2; d2 ; 1

4)
.

With these approximations we do not recover in the limitα → 0+ the indistinguishability
of both directions of the monomer labelling, because of the reminescent discernability when
α 6= 0. Therefore, we have to modify equation (65a) as

(1 +P(α2) + o(α10)) −→
(

1

2!
+ P(α2) + o(α10)

)
.

With Taylor expansions we found the free energy as

FN(α) = Fid(N, V, T )− kT (F2α
2 + F4α

4 + F6α
6 + F8α

8 + o(α10)) (66)

where 
F2 = A2 + (N − 1)ϕ1

F4 = A4 + (N − 1)(ϕ2 − 1
2ϕ

2
1)

F6 = A6 + (N − 1)(ϕ3− ϕ1ϕ2 + 1
3ϕ

3
1)

F8 = A8 + (N − 1)(ϕ4 − ϕ1ϕ3− 1
2ϕ

2
2 + ϕ2

1ϕ2 − 1
4ϕ

4
1)

and with 

A2 = 1

d

A4 = −1

4

(d + 4)

d2(d + 2)

A6 = 1

48

(5d2 + 48d + 128)

(d + 4)(d + 2)d3

A8 = − 1

192

(37d4 + 410d3 + 1712d2 + 4224d + 4608)

(d + 6)(d + 4)(d + 2)2d4
.

Force/extension relations for smallα and forN > 3 are now given by

〈Z〉
Na
' 1

Nd
(Z1(N)α +Z3(N)α

3 +Z5(N)α
5 +Z7(N)α

7 + o(α9)) (67)

where theZi(N) are easily computed from theFi .
Equation (67) is not valid forN = 2, because it has been obtained by using IMA and

whenN = 2 there is no propagator to cut (cf section 2.2). ForN = 2 andd = 3 we found by
computing the integralJ1(α; yo) given by equation (43):

〈Z〉
2a
= 2

3
α − 0.331 64α3 + 0.212 61α5− 0.128 92α7 + o(α9). (68)

In a molecular dynamics [13] using the RATTLE algorithm [23] to take the holonomic
constraints into account and the Nosé–Hoover thermostat [21] to perform a sampling in the
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canonical ensemble, we have found ford = 3 andN = 20, Z1(20)|MD = 20.4 ± 0.1
and Z3(20)|MD = −1.65 ± 0.25, and forN = 30, Z1(30)|MD = 30.0 ± 0.1 and
Z3(30)|MD = −1.5± 0.6. According to equation (67) we computeZ1(20)|IMA ' 20.352
andZ3(20)|IMA ' −1.613, andZ1(30)|IMA ' 30.011 andZ3(30)|IMA ' −2.216. Thus IMA
and MD simulations are in good agreement, while ILA fails to predict any dependence on the
degree of polymerization.

In the literature, force/extension relations are frequently defined from susceptibility. That
definition allows one to include fluctuations in variations of the extensive variableZ, while
equation (57) furnishes only the average ofZ in the canonical ensemble. By definition of
susceptibility we have

χkT = 〈1Z2〉 = 〈Z2〉 − 〈Z〉2 (69)

and with equations (57) and (58) an analytical expression of〈Z2〉 can be extracted. From〈Z2〉
we define a force/extension relation including fluctuations ofZ as

〈〈Z〉〉 =
√
〈Z2〉 = g(α). (70)

With the Taylor expansion one may also obtain expressions forgN(α) where the dependance
on the degree of polymerization is explicitly included to the accuracy of IMA at first order (i.e.
in 1/N ).

Comparison of experimental data, as for instance micromanipulations of DNA molecules,
or numerical results obtained by molecular dynamics simulations, with computations
performed with IMA must be made withgN(α) rather than with the force/extension relations
given by equations (67) and (57). In figure 3, we have plotted the force/extension relations given
by the functionsgN(α) for N = 12, 20, 50, 100 and 10 000, ford = 3. The force/extension
relation obtained by using ILA, the MD results forN = 20 andd = 3 [13], and some
experimental points of micromanipulations of DNA molecules extracted from [16] are also
represented on this figure.

The functiong20(α) is in very good agreement with MD simulation. Experimental points
for DNA molecules could be interpretated as though the numbers of ‘effective monomers’
in molecules varied with the amplitude of the force applied to both ends. Since in the
experiments of [16] there is no histone octamer left in the molecules after preparation of
the sample, the hypothetical ‘effective monomers’ cannot be histones. Nevertheless, when
histones are removed from DNA molecules some local structures or secondary strutures, such
as plectonemic or double helix, are induced to minimize the bending and torsional energies of
the molecules. These local structures might perhaps be identified with effective monomers.
Thus when the stretching force is increased these local structures would be undone and therefore
the numbers of effective monomers is reduced. If a stretching force is strong enough to remove
all effective monomers then the true elasticity of the double helix of the DNA molecule would
be measured, and as has been shown, this elasticity is quite well described by the worm-like
chain (WLC) [24, 25] or the continuous model of Krathy–Porod chains [26].

The mechanism described in the last paragraph is hypothetical because, even with the
great experimental skill of the authors of [16, 27], a measurement of the stretching force as
small as a few femtonewtons needs more than two hours with the experimental set-up described
in [16]: explicitly experimental errors are as large as 5–10% in this regime. In figure 3 the
error bars on the experimental points are set to 8% for the force, and to 5% for the extension.
The experimental points are not much more than one or two standard deviations of the WLC
or ILA force/extension relations; thus, to test the validity of the hypothetical mechanism
proposed in the previous paragraph, a higher accuracy and more data in the weak force regime
are needed [27].
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Figure 3. Force/extension relations including fluctuations of the end-to-end distance. The relations
obtained with ILA and with IMA forN =12, 20, 50, 100, and 10 000 are represented ford = 3.
Open circles are MD results forN = 20. Filled diamonds are experimental results for a single
DNA molecule extracted from [16]. The experimental errors are estimated as 8% for the amplitude
of the force and 5% for the extension;kT /a ' 0.038pN .

4. General discussion

In this work we have presented analytical computations of freely jointed chains in a one-
dimensional external field. As was shown recently [4, 5], interactions between the monomers
via holonomic constraints induced a coupling between nearest-neighbours; nevertheless, this
coupling is simple enough such that the analytical computation of the canonical partition
function can still be performed. All computations done in section 2.1 of this paper are
analytical and can be applied to any one-dimensional potential. In particular, we have obtained
equation (23) from equation (1) in an analytical way: therefore equation (23) holds all
information about the linear connectivity of the chain. This result can be useful to define
rigorously new approximations for chains in a one-dimensional field. For instance, this result
can help to define approximations for the chain stretched at both ends in the strong regime or
for polymers stretched under a flow where the ILA fails.

Another interesting result of this paper is to show how one can extend the ILA rigorously
to take into account more precisely the linear connection of the chain. This extension is called
IMA and by construction, when this approximation is improved by grouping monomers, it
converges to the analytical result given by equation (23) [5]. This new scheme of approximation
can also be extended very easily to chains with heterogeneous mass sequence. As in ILA, in
IMA we consider that the movement of monomers are only slightly influenced by the movement
of its neighbours; thus, this kind of approximation is valid only for weak interactions between
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the field and monomers or at high temperature.
When applied to the chain stretched at both ends these computations give several new

results. The entropic elastic constants of the chain are shown to be 3% higher than those
predicted by ILA. These computations allow us to extract the dependence of the properties
of the chain on the degree of polymerizationN , while ILA cannot predict any dependence
onN because each bond is treated on the same footing. In conclusion, since the correction
induced by the dynamical part of the holonomic constraints is small, it is recommended for
crude theoretical descriptions of some macromolecular systems, like polymers networks, to
use ILA instead of IMA, whose analytical functions are more complicated. On the other hand,
in MD simulations these corrections are relevant.

As is shown in [4, 5] the phase space of freely jointed chains can be considered as a
subset of the phase space of the ideal gas; thus, when we perform MD in Nosé–Hoover or
microcanonical ensemble, application of the ergodic hypothesis is not straightforward. As for
the ideal gas, there are in the freely jointed chain some degrees of freedom that are not coupled
to the dynamics, and then the system does not reach thermalization. This problem will be
studied in a forthcoming paper [13].

Finally, the new results, including the dependence on the degree of polymerization, might
also explain some experimental features of a single DNA molecule under uniform tension in the
entropic regime. The mechanism described very briefly at the end of section 3 is hypothetical.
A higher accuracy and more experimental points in the entropic regime would be very useful
to validate or invalidate such a mechanism.
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